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a b s t r a c t

Establishing a method to evaluate the reliability of an optimal solution is an exciting challenge for the
nonlinear response surface method. We reported previously that the bootstrap (BS) resampling technique
and Kohonen’s self-organizing map are promising tools for meeting this challenge. To understand the use-
fulness of these techniques further, we employed a formulation optimization study of photocrosslinked
polyacrylic acid (PAA) hydrogel as a case study. In a series of experiments, a large number of optimal
solutions were generated with BS resampling and they were classified into three distinct clusters with
SOM clustering. Using analysis of Bayesian estimation, we clarified the mode of generating clusters; e.g.,
onfidence intervals
ootstrap resampling technique
ohonen’s self-organizing map
ayesian estimation
ermatological patch

cluster 2 was distinguished by the difference in features between the BS optimal solutions and the orig-
inal optimal solution, whereas cluster 3 was distinguished by the substantial change in the shape of the
response surfaces. We concluded that cluster 1 represents the global optimal solution, and then estimated
95% confidence intervals of the optimal solutions using the BS optimal solutions. These findings prove
that our method is a valid approach for evaluating nonlinear optimal solutions. This method has appli-
cations for establishing a science-based rationale for, and a design space in, pharmaceutical formulation

development.

. Introduction

The international conference on harmonisation of technical
equirements for registration of pharmaceuticals for human use
ICH) Q8 guideline recently propounded the establishment of a
cience-based rationale. The concept of quality by design described
n the ICH Q8 guideline states that “quality cannot be tested into
roducts; i.e., quality should be built in by design”. Response surface
ethodology (RSM) is one recommended method for establishing

the design space”. RSM is used widely to optimize formulations of
harmaceuticals (Khuri and Cornel, 1987; Myers and Montgomery,
995). The general procedures for determining optimal solutions
ia RSM include the collection of experimental data, the genera-
ion of a response surface between the causal factors and response
ariables, and the search for individual and simultaneous optimal
olutions (Onuki et al., 2008b). Selection of the methods used to
enerate the response surface is the most important for optimizing
ormulation because, for the most part, the estimation of an accu-

ate optimal solution depends significantly on the extent to which
he generated model approximates the actual relationship.

We developed an RSM that incorporates multivariate spline
nterpolation, RSM-S. Multivariate spline (MVS) interpolation is

∗ Corresponding author. Tel.: +81 3 5498 5783; fax: +81 3 5498 5783.
E-mail address: onuki@hoshi.ac.jp (Y. Onuki).

378-5173/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.ijpharm.2010.06.013
© 2010 Elsevier B.V. All rights reserved.

used to generate the response surface. The basic concept of MVS
interpolation involves a boundary element method (Sandwell,
1987). MVS interpolation can be used to estimate nonlinear
relationships between factors and response variables with high
accuracy. Green functions are used for the minimum curvature
interpolation of multidimensional data points. MVS interpolation
estimates multidimensional data using a thin-plate spline that rep-
resents the sum of interpolations made with a Green function and
a linear polynomial equation (“thin-plate estimation”) (Wahba,
1990). Thus, it enables the incorporation of observational data,
including experimental errors, naturally. We have applied RSM-S to
the formulation optimization of various pharmaceuticals. Our find-
ings to date suggest that RSM-S is an effective tool for optimizing
the formulation of pharmaceuticals (Arai et al., 2007; Kikuchi and
Takayama, 2009; Nishikawa et al., 2008; Onuki et al., 2005, 2004,
2008b; Takayama et al., 2004).

For nonlinear RSMs, such as RSM-S, establishing a method
to evaluate the reliability of the optimal solution estimate has
remained a challenge to overcome. In the case of a classical lin-
ear RSM, the reliability of optimal solution can be evaluated by a
statistical technique. In contrast, no satisfactory method has yet

been established for nonlinear RSM. We recently devised a novel
method to address this issue (Kikuchi and Takayama, 2009; Onuki
et al., 2008b). The method is achieved by making use of bootstrap
(BS) resampling and Kohonen’s self-organizing map (SOM) with an
RSM-S. We previously applied this method to the preparation of

dx.doi.org/10.1016/j.ijpharm.2010.06.013
http://www.sciencedirect.com/science/journal/03785173
http://www.elsevier.com/locate/ijpharm
mailto:onuki@hoshi.ac.jp
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ig. 1. Formulation optimization study of photocrosslinked PAA hydrogel for use
hotopolymer mechanism by formation of crosslinked PAA networks by intermole

theophylline tablet as a case study (Onuki et al., 2008b). A large
umber of BS samples were generated from the original data set
sing BS resampling, and simultaneous optimal solutions for each
S sample, BS optimal solutions, were then estimated. Because the
S optimal solutions seemed to have both global and local opti-
al solutions, we performed SOM clustering to extract the global

ptimal solutions from the whole BS optimal solutions and we esti-
ated the 95% confidence intervals of the variables.
From the findings, we thought that the method was promis-

ng for evaluating the reliability of nonlinear optimal solutions.
n this study, we applied it to the other optimization study of a
ydrogel used in a dermatological patch adhesive. Recently, our

aboratory has developed a photocrosslinked polyacrylic acid (PAA)
ydrogel, which is made from a PAA modified with 2-hydroxyethyl
ethacrylate (HEMA) (Fig. 1A) (Nishikawa et al., 2008; Onuki et

l., 2005, 2008a). For the preparation of the hydrogel, a photopoly-
erization technique was employed. When the polymer aqueous

olution is exposed to ultraviolet (UV) light, HEMA groups in the
AA molecules react, leading to the construction of inter- and
ntramolecular crosslinking structures with covalent bonding and
el formation (Fig. 1B). Compared with conventional hydrogels
ade by crosslinking with ionic bonds, the hydrogel is superior

n several aspects. For example, because our hydrogel can be set at
lower crosslinking density than other gels, we expected to obtain
hydrogel that retains more water without losing mechanical

trength. Further, because photopolymerization enables the rapid
onversion of a polymer solution into a hydrogel under physiolog-
cal conditions, this hydrogel is also attractive as a biomaterial. In a
revious study, we investigated the relationships between formu-

ation factors and physical properties (Onuki et al., 2005). We also
erformed a formulation optimization study using RSM-S and then
ecided the optimal conditions to prepare the preferred hydrogel
or use as a dermatological patch adhesive (Onuki et al., 2005).

In this study, we evaluated the reliability of the optimal solution
y using the novel method incorporating BS resampling technique
nd SOM clustering. We also investigated the mechanism for gen-
rating global and local optimal solutions in BS optimal solutions.
or the investigation, Bayesian estimation was employed. The
ndings offer a scientific rationale showing that our strategy is a
alid approach for evaluating the reliability of nonlinear optimal
olutions.

. Theoretical
.1. BS resampling

BS resampling is a computer-based method of statistical infer-
nce. The basic concept of BS resampling is random sampling
rom the original data (Efron and Tibshirani, 1993). A BS sample,
matological patch adhesive. (A) Chemical structure of HEMA-derivatized PAA. (B)
nd intramolecular polymerization of HEMA groups in PAA molecules.

x∗ = (x∗
1, x∗

2, . . . , x∗
n), is sampled randomly, with a replacement,

from the original data points x1, x2, . . ., xn. As for the BS resampling,
duplication of the same data in one BS sample is allowed; therefore,
a part of the original data may be selected several times in each BS
sample. By repeating the BS resampling procedure, a large number
of BS samples are generated from the original data. BS resampling
is commonly used for estimating confidence intervals and the bias
and variance of an estimator. The BS resampling technique has been
applied recently to various research fields (Efron and Tibshirani,
1993). The BS resampling process for evaluating the reliability of
simultaneous optimal solutions estimated by RSM-S is shown in
Fig. 2. Further details are described in Section 3.

2.2. SOM clustering

The SOM is a feedforward-type neural network model
(Kohonen, 1995). The typical structure of the SOM comprises one
input layer and one output layer, and the array of nodes is located in
the output layer. Every node, mi = (mi1, mi2, . . ., min), has the same
number of parametric reference vectors as the input vector (x).
The SOM algorithm is based on unsupervised, competitive learn-
ing. When an input vector is given to the network, the Euclidean
distances from the input vector to all the nodes are calculated
(Takayama et al., 2000, 2004). By comparing the Euclidean dis-
tances, every node competes for similarity to the input vector, and
the winner node (mc) is defined as the node that is closest to the
input vector. After competitive learning, the weight vectors of the
winner node and the neighborhood area are updated. The update
formula for a node with a reference vector (mk) is calculated as:

mk(t + 1) = mk(t) + ˛(t) �(v, t)[x(t) − mk(t)],

where ˛(t) is a monotonically decreasing learning coefficient and
x(t) is the input vector. The neighborhood function �(v, t) depends
on the lattice distance between the winner node and the node
(v). This process is repeated for each input vector for a (usually
large) number of cycles. The network ultimately associates the
output nodes with groups or patterns of input vectors. SOM clus-
tering requires no human intervention during learning. The SOM
has received much attention recently as a promising tool for data
mining. In this study, SOM clustering was used to sort the cluster of
global optimal solutions from the widely distributed BS solutions.

2.3. Bayesian estimation
Bayesian estimation is a method to estimate the posterior
probability of the hidden variable from observable data under an
assumption of a model of the dependency of hidden and observable
variables (Cooper and Herskovitz, 1992). It is based on Bayes’s The-
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Table 1
Model formulations for photocrosslinked PAA hydrogel based on an orthogonal
experiment design.

Formulation
number

Initiator concentration
(wt% of polymer amount)

Modification with HEMA
(mol%)

Rp.1 0.29 8.7
Rp.2 0.29 26.3
Rp.3 1.71 8.7
Rp.4 1.71 26.3
Rp.5 1.00E−03 17.5
Rp.6 2.00 17.5

ing a simultaneous optimal solution was the following: gel fraction
and probe tack value must be more than 80% and 200 mN/5 mm
�, and a lower degree of swelling and turbidity were the preferred
characteristics. Further information about the original optimal for-
mulation estimated from the previous study is shown in Table 2.

Table 2
Predicted and observed values of a simultaneous optimal solution estimated from
the original data.

Predicted values Observed values

Formulation factor
Initiator concentration (%) 0.90 –
Modification with HEMA (mol%) 16.1 –

Characteristics
Fig. 2. Procedure for evaluating the reliability of

rem, which is a simple mathematical formula used for calculating
onditional probabilities as follows:
(

H

D

)
= P(D/H)P(H)

P(D)
,

here H is the hypothesis, D is the data, P(H) is the prior probability
f H, P(D/H) is the likelihood of H, P(D) is the marginal probability
f D, and P(H/D) is the posterior probability. P(H) is the probability
hat H is correct before the data D are seen. P(D/H) is the conditional
robability of seeing the data D given that the hypothesis H is true.

P(D) is the prior probability of witnessing the data D under all
ossible hypotheses, and is expressed as follows:

(D) =
∑

P
(

D

H

)
P(H).

The Bayesian interpretation of probability can be seen as
n extension of logic that enables reasoning with uncertain
tatements. The rules of Bayesian statistics can be justified by
equirements of rationality and consistency. At present, Bayesian
robability is one of the most popular interpretations of the con-
ept of probability. This probabilistic knowledge is used widely
n various fields such as artificial intelligence, applied statistics,
nd, more recently, bioinformatics (Jansen et al., 2003; Vadim and
rtem, 2005; Wade et al., 2009; Xue et al., 2006).

. Materials and methods

.1. Model data

The data dealt with in this study correspond with Table 7 in
ur previous article (Onuki et al., 2005). This experiment was per-
ormed using an orthogonal experimental design (Table 1). The
nitiator concentration and modification of the base polymer with
EMA were selected as formulation factors, and 10 kinds of model

ormulations were prepared. Their physical properties such as gel
raction, degree of swelling, turbidity, and probe tack were mea-
ured as crucial response variables for a dermatological patch
dhesive. In this study, the experimental data set, including model
ormulations and their response variables, is called the “original

ample”. As a result of the experiment, RSM-S was used to con-
truct a reliable model of the correlations between the formulation
actors and response variables. The leave-one-out cross-validation
howed very good correlation coefficients (r) of more than 0.931
etween the predicted and experimental values (data not shown).
Rp.7 1.00 5.0
Rp.8 1.00 30.0
Rp.9 1.00 17.5
Rp.10 1.00 17.5

Further explanations of the experiments were described fully in the
previous article (Onuki et al., 2005).

3.2. Data analysis

A procedure for evaluating the reliability of optimal solutions is
shown in Fig. 2. To begin, we estimated the optimal solution from
the original sample with RSM-S, called “the original optimal solu-
tion”. We defined a hydrogel having sufficient mechanical strength
and high water content as being preferable. The conditions for seek-
Gel fraction (%) 80.3 85.9 ± 0.3
Degree of swelling 254.6 245.3 ± 8.2
Probe tack (mN/5 mm �) 391.1 483.5 ± 39.6
Turbidity (ABS at 505 nm) 0.401 0.462 ± 0.018

These data are quoted from our previous article (Onuki et al., 2005).
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Table 3
Typical BS optimal solutions of each cluster.

Cluster 1 Cluster 2 Cluster 3

Formulation factor
Initiator concentration (%) 0.90 0.88 0.83
Modification with HEMA (mol%) 15.7 18.9 16.2

Characteristics
Gel fraction (%) 80.2 80.0 81.9
Degree of swelling 263.6 214.8 253.3
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o
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he response variables of the hydrogel prepared according to the
ormulation were coincident with the predicted values. Thus, a reli-
ble original optimal solution was thought to have been obtained
rom the study. Details of the optimization procedure in RSM-S have
een described in full (Onuki et al., 2005).

One thousand BS samples were generated from the original
ample using BS resampling, and the optimal solutions of each BS
ample, “the BS optimal solutions”, were estimated with RSM-S.
ataNESIA® Version 3.0 (Yamatake Corp., Tokyo, Japan) was used
or RSM-S and BS resampling.

To classify the BS optimal solutions into distinct clusters, SOM
lustering was performed. BS optimal solutions and their estimated
esponse variables were used as the input vectors. The number of
odes in the output was set at 2000. Viscovery® (Eudaptics Soft-
are GmbH, Vienna, Austria) was used for SOM clustering. This

oftware offers several clustering techniques such as SOM-Ward,
ard, and SOM-Single-Linkage. Of these techniques, SOM-Ward
as used for clustering the BS optimal solution because it is con-

idered the most efficient in general.
The data sets of 1000 BS samples were arranged for analysis of

ayesian estimation. First, the compositions of the BS samples of
ach cluster (e.g., formulations resampled to a BS sample and their
uplication number) were identified. Next, the formulations of the
S samples were sorted and coded. Formulations that were not
esampled to a BS sample were coded as 0, and the resampled for-
ulations were coded as 1 regardless of the number of duplications

n the BS resampling process. We used the data sets of each clus-
er as the input data set and then analyzed them according to the
ayesian estimation. BeyoNet 4.0 software (AIST, Tsukuba, Japan)
as used for the Bayesian estimation.

. Results
.1. Classification of BS optimal solutions into distinct clusters

Fig. 3 shows histograms of the formulation factors and the
esponse variables of the BS optimal solutions. In advance of prepar-

ig. 3. Histograms of formulation factors and response variables generated with BS resam
ptimal solutions estimated from the BS samples. The white lines represent the values of
o preparation of histogram.
Probe tack (mN/5 mm �) 383.0 430.1 404.1
Turbidity (ABS at 505 nm) 0.391 0.456 0.403

ing the histograms, the data were transformed to a logit form,
because they have lower and upper limits. The white line in the
graphs represents the values of the original optimal solution. Their
distributions differed from the normal distribution. By contrast,
some conditions such as those involving modification with HEMA
and the degree of swelling, and turbidity showed several peaks. This
result is similar to that observed in our previous study (Onuki et al.,
2008b). In our previous study, we attributed this to the coexistence
of global and local optima in the whole BS optimal solutions.

To classify whole BS optimal solutions into distinct clusters, SOM
clustering was conducted. SOM feature maps show that BS optimal
solutions were classified into three clusters with distinct response
variables (Fig. 4A). We also acquired the centroid BS optimal solu-
tions of clusters from the reference vectors of the SOM, and we
regarded them as the typical data sets of each cluster (Table 3
and Fig. 4B). Cluster 2 showed more modification with HEMA;
e.g., the centroid value was 18.9 mol% compared with 16.1 mol%
of the original optimal solution. The greater HEMA modification

was accompanied by a lower degree of swelling, higher probe tack,
and higher turbidity (Fig. 4A). By contrast, the centroid BS optimal
solutions of clusters 1 and 3 were very close to the original opti-
mal solution. Apart from the gel fraction, the response variables of
cluster 3 were similar to those of cluster 1 in every way (Fig. 4A).

pling. BS resampling was repeated 1000 times. These histograms represent 1000
the original optimal solutions. Original data were transformed to a logit form prior
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ig. 4. Clusters of BS optimal solutions classified by SOM clustering. (A) SOM featu
f clusters. (�) Original optimal solution, (�) cluster 1, (�) cluster 2, and (�) cluster

.2. Elucidating the mode of generation of distinct clusters

To investigate how the SOM clustering detected the three clus-
ers, we analyzed 1000 data sets of BS samples according to
ayesian estimation. Fig. 5 shows the Bayesian probabilities accord-

ng to whether each formulation was resampled to the BS samples
f clusters. In cluster 3, the resampled probability of Rp.5 was very
ow, 46.4%, indicating that the cluster was constructed by BS sam-
les having less Rp.5. As for cluster 2, although the impact was not
s strong as that for Rp.5 in cluster 3, the resampled probability of
p.7 was the lowest, 88.1%. In contrast to clusters 2 and 3, the val-
es of resampled probability of cluster 1 were very high (more than
3.3%) and changed little, suggesting that cluster 1 was composed

f BS samples with a homogeneous proportion of formulations.

We next investigated the contribution of model formulations
o the decision of optimal formulation using the leave-one-
ormulation-out (LOFO) approach. The data points corresponding

Fig. 5. Resampled probability of formulations to BS sam
ps of formulation factors and response variables. (B) Centroid BS optimal solutions

with each formulation were removed from the original sample,
and they were used as the LOFO samples. Their optimal solutions,
“LOFO optimal solutions”, were estimated by the same method
using RSM-S (Table 4). The weights of the contribution of the formu-
lation factors were normalized, and the distances from the original
optimal solution to each LOFO optimal solution were evaluated.
Removing the data points of Rp.7 caused the LOFO optimal solution
to move furthest away from the original optimal solution. Rp.5, a
crucial formulation for cluster 3, also made the optimal solution
change markedly.

We further examined the similarity of the response variables
estimated from two different response surfaces. One surface was
generated from the original sample, “original response surfaces”,

and the other one was generated from the BS samples, “BS response
surfaces”. Because every BS sample differs from the original sample,
this results in the generation of BS response surfaces with differ-
ent shapes to the original surfaces. If the change in the shape of

ples in clusters according to Bayesian estimation.
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Table 4
Optimal solutions estimated according to the leave-one-formulation-out (LOFO) approach using RSM-S.

Formulation removed
from original sample

Initiator concentration (wt% of
polymer amount)

Modification with
HEMA (mol%)

Normalized distance from the
original optimal solutiona

Rp.1 0.95 15.9 2.76
Rp.2 0.90 16.5 1.71
Rp.3 0.93 15.9 1.71
Rp.4 0.89 16.0 0.54
Rp.5 0.75 15.3 8.17
Rp.6 0.85 16.0 2.34
Rp.7 0.91 18.9 11.19
Rp.8 0.92 15.8 1.56
Rp.9 0.90
Rp.10 0.89

a These values indicate distances from the original optimal solution to LOFO optimal s
were coded as 0–100%.

F
s
h

t
t
o
r
T
c
e
a
t
o
d

ı

w
s
s
s
v
a
c

5

t
t
(
t
n
p
o
p

ig. 6. Difference between the response variables estimated from the BS response
urfaces and original response surfaces. A similarity index, ı, was defined so that
igher ı values represent lower predictive accuracy of the response variables.

he BS response surfaces is substantial, the predicted values from
he BS response surfaces also change significantly from those of the
riginal response surfaces. In this experiment, we investigated the
esponse variables of the centroid BS optimal solutions shown in
able 3. The centroid BS optimal solutions were regarded as typi-
al optimal solutions of each cluster. Their response variables were
stimated from the BS response surfaces. In addition, because they
re not the model formulations shown in Table 1, we can regard
hese BS optimal formulations as untested formulations for the
riginal surfaces. To compare the values of response variables, a
egree of similarity, ı, was defined as follows:

(%) =
∣∣Fo − Fi

B.m

∣∣
Fo

× 100

here Fo signifies the response variables of the centroid BS optimal
olutions estimated from the original response surfaces, and Fi

B.m
ignifies the response variables estimated from the BS response
urfaces shown in Table 3. As a result, the ı values of the response
ariables of cluster 3 were very high, whereas those of clusters 1
nd 2 were very low. This suggests that the BS response surfaces of
luster 3 differed markedly from the original surfaces (Fig. 6).

. Discussion

In order to evaluate the reliability of nonlinear optimal solu-
ions, we recently developed a novel method based on integrating
he BS resampling technique and SOM clustering into an RSM-S
Kikuchi and Takayama, 2009; Onuki et al., 2008b). We note that

he methodology is similar to a parametric approach. RSM-S is a
onlinear method by nature; however, the processes of BS resam-
ling and SOM clustering enable us to deal with the nonlinear BS
ptimal solutions as if they were parametric parameters. Although
ercentile method has been reported as a nonparametric method
17.5 5.62
15.7 1.59

olutions on the coordinate in which the formulation factors of model formulations

for inferring confidence intervals (Nourissat et al., 2010; Tang et al.,
2010), we thought that the parametric approach is more realistic
and universal. A previous case study of the preparation of theo-
phylline tablets suggested that the BS resampling technique and
SOM clustering are promising tools for evaluating the reliability
of nonlinear optimal solutions (Onuki et al., 2008b). In this study,
we applied the method to a formulation optimization study of a
hydrogel for use as a dermatological patch adhesive.

One thousand BS optimal solutions were generated using the
BS resampling technique. The histograms of the formulation fac-
tors and response variables were far from a normal distribution,
and some showed several peaks (Fig. 3). Because the BS optimal
solutions were also thought to contain global and local optimal
solutions, as in the previous study, we performed SOM clustering,
which showed that BS optimal solutions could be classified into
three distinct clusters. The BS optimal solutions of clusters 1 and
3 were similar to the original optimal solution, whereas those of
cluster 2 were very different. In particular, the degree of modifi-
cation with HEMA of cluster 2 was higher than that of the original
optimal solution. Polymers with a large degree of modification with
HEMA possess many crosslinkable points, producing a rigid hydro-
gel with high crosslinking density. We have already clarified that
the hydrogel with high crosslinking density is accompanied by a
lower degree of swelling, higher turbidity, and higher probe tack
values (Nishikawa et al., 2008; Onuki et al., 2005, 2008a). Such
relationships are well represented by the feature maps (Fig. 4A).

SOM clustering is a powerful tool in terms of classification into
distinct clusters. However, we are yet to find evidence to explain
how the clusters are generated. One possible reason for the gener-
ation of clusters relates to the risk involved in the BS resampling,
which is a random resampling technique. Because the data points
resampled in a BS sample differ between samples, different BS opti-
mal solutions will be estimated. We think some model formulations
act as a crucial factor in deciding the optimal solution. That is, the
BS optimal solutions change substantially according to whether the
BS sample contains the crucial formulations, and the optimal solu-
tions induce the generation of distinct clusters corresponding to
one global solution and several local solutions.

To test our hypothesis, we firstly examined the relationships
between the compositions of BS samples and their optimal solu-
tions according to Bayesian estimation (Fig. 5). In cluster 3, the
resampled probability of Rp.5 was obviously low, whereas, in clus-
ter 2, the lowest resampled probability was observed from Rp.7. On
the basis of this result, we thought that generation of clusters 2 and
3 was provoked by deleting Rp.7 and Rp.5 from the original sam-

ple. By contrast, because the resampled probability of formulations
changed little, cluster 1 represented BS samples having a uniform
population of formulations.

The LOFO approach was performed next to investigate the
involvement of the data points of the model formulations in decid-
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F removing Rp.5 from the original data. The response surfaces (A–D) were generated from
t sample after removal of Rp.5. (A) and (E) show the gel fraction; (B) and (F), the degree of
s t the model formulations of the hydrogel. The original response surfaces (A–D) are taken
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Table 5
95% confidence intervals of the simultaneous optimal solution estimated by RSM-S
in the optimization of photocrosslinked PAA hydrogel.

Lower Upper
ig. 7. The risk of missing the predictive accuracy of the response surfaces caused by
he original data set, and the response surfaces (E–H) were generated from the LOFO
welling; (C) and (G), the probe tack; and (D) and (H), turbidity. The points represen
rom the previous study (Onuki et al., 2005).

ng on the optimal solution. By removing Rp.7, the LOFO optimal
olution moved furthest from the original solution (Table 4), imply-
ng that Rp.7 has the most influence on the features of the optimal
olution. Interestingly, the LOFO optimal solution (initiator concen-
ration, 0.91%; modification with HEMA, 18.9 mol%) was similar to
he centroid of cluster 2 shown in Table 2 (initiator concentration,
.88%; modification with HEMA, 18.9 mol%). Taken together, clus-
er 2 was generated by BS samples missing formulations that exert
dominant influence on the features of the optimal formulation,

uch as Rp.7.
By removing Rp.5, a crucial formulation for cluster 3, the

OFO optimal solution also moved away from the original optimal
olution (Table 4). However, the LOFO optimal solution (initiator
oncentration, 0.75%; modification with HEMA, 15.3 mol%) was not
lose to the centroid of cluster 3 (initiator concentration, 0.83%;
odification with HEMA, 16.2 mol%). We think that Rp.5 affected

he generation of cluster 3 by a mode different from that of Rp.7
n generating cluster 2. Rp.5 is a particular model formulation; i.e.,
o hydrogel was formed from the formulation because of its low

nitiator concentration (Onuki et al., 2005). Its response variables
iffered markedly from those of the other model formulations. For

nstance, except for Rp.5, every gel fraction value was very high,
ore than 75%. This probably relates to the generation of cluster 3;

hat is, if a BS sample misses being resampled in Rp.5, the shape
f the response surfaces will differ considerably from the origi-
al surfaces like those shown in Fig. 7. Such substantially changed
esponse surfaces will no doubt lead to significant reduction in the
rediction accuracy of RSM-S.

To confirm this issue, we compared the similarity of the
esponse variables estimated from the two different response sur-
aces: the original response surfaces and the BS response surfaces.
f these response surfaces differ considerably in shape, the ı values
hould increase. As we anticipated, large ı values were observed

rom cluster 3, whereas the ı values from clusters 1 and 2 were very
mall (Fig. 6). The BS response surfaces of cluster 3 are thought to
iffer significantly in shape from those of the original surfaces; thus,
luster 3 was distinguished by its low predictive accuracy because
f a substantial change in the shape of the BS response surfaces.
Formulation factor
Initiator concentration (%) 0.78 0.98
Modification with HEMA (mol%) 13.4 17.7

Our study allowed us to clarify the mode of generation of clus-
ters. Our findings lead us to conclude that clusters 2 and 3 represent
local optimal solutions coexisting in BS optimal solutions and that
cluster 1 is the cluster representing the global optimal solutions.
Finally, we estimated 95% confidence intervals of the optimal solu-
tion using the BS optimal solutions of cluster 1 (Table 5). The
original optimal solution was within the 95% confidence intervals.

6. Conclusions

Our method of integrating the BS resampling technique and
SOM clustering into RSM-S is a promising tool for evaluating the
reliability of nonlinear optimal solutions. Using the BS resampling
technique and SOM clustering, we successfully extracted the clus-
ters representing the global optimal solution, and we calculated
the 95% confidence intervals of the optimal solutions. In this study,
we also clarified the mode of generation of distinct clusters in BS
optimal solutions. The findings indicate that our strategy is a valid
approach for evaluating the reliability of nonlinear optimal solu-
tions. This evaluation method should offer insights into developing
a science-based rationale for, and a design space in, pharmaceutical
formulation development.
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